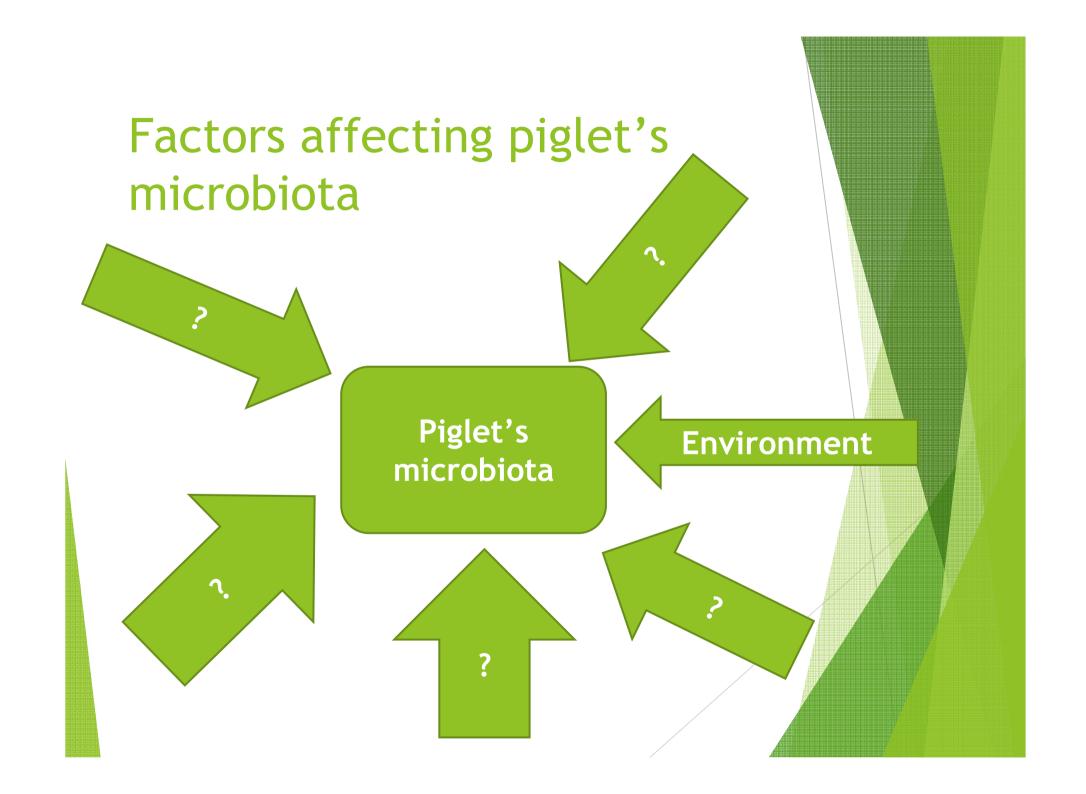


Adding fermentable feed ingredients to pigs: changes or stability to the intestinal microbiota

Nadia Everaert, PhD, Associate Professor Liège Université- Gembloux Agro-Bio Tech Precision Livestock and Nutrition Unit Belgium

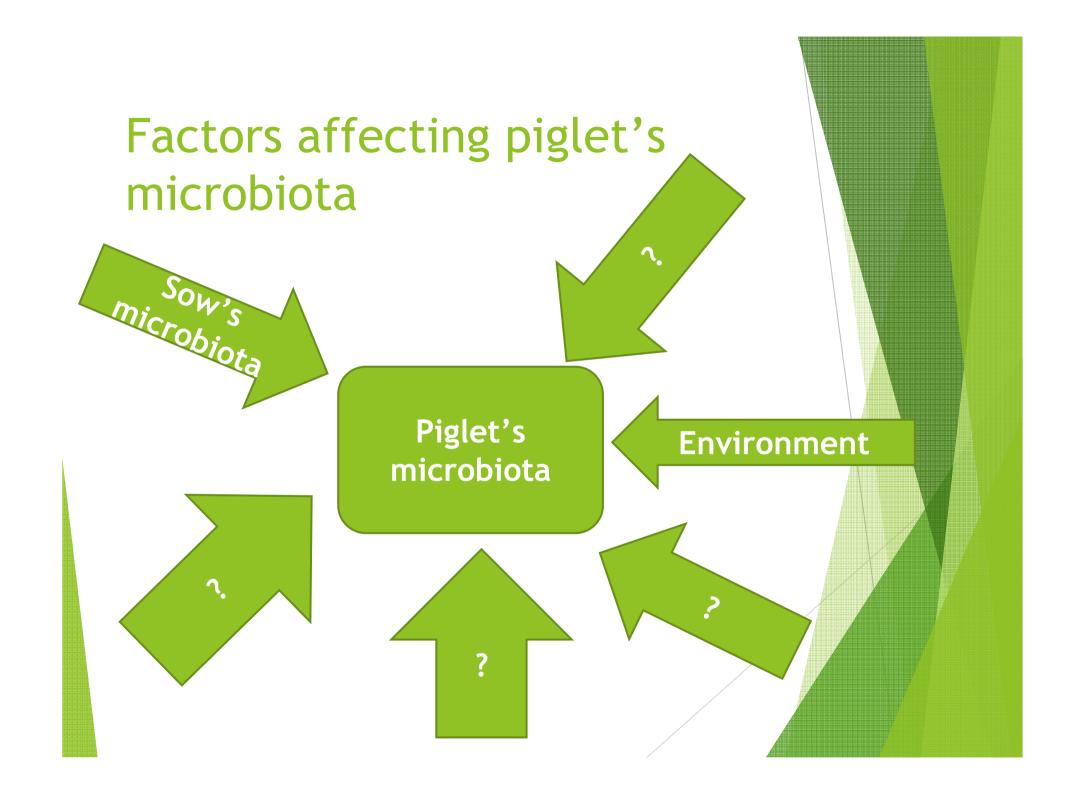


Early life colonization

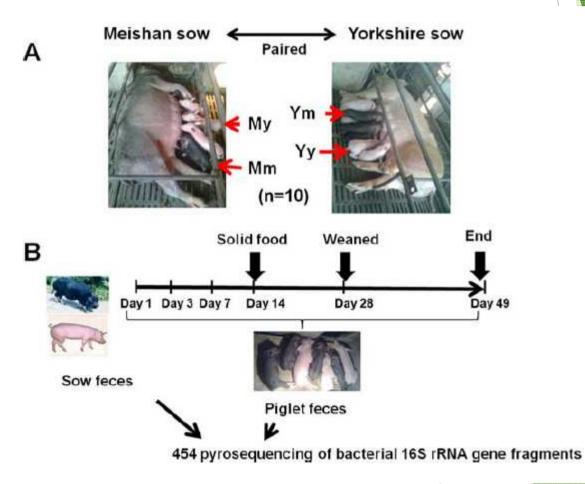
- Pigs seperated from sow after birth and reared on milk replacer
- Non-siblings were co-housed in pairs
- The community of piglets older than 31 days was inferred to show high stability relative to the first 28 days post birth
- Significant correlation of microbial communities between cohabiting piglets, but not between siblings

Gut colonization in piglets is greatly influenced by the immediate environment

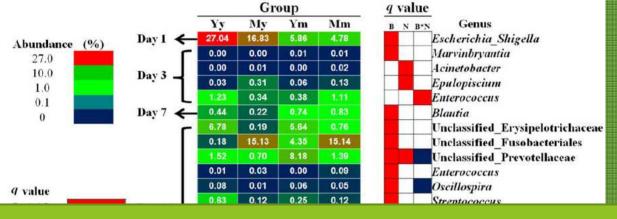
Thompson et al., 2008


Early life colonization

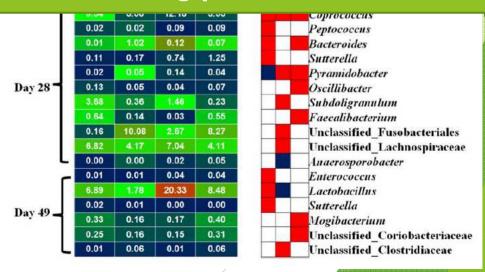
- Piglets born by caesarian section, kept in clean isolators during 28 d
- Two treatments:
 - ► Inoculum + saline inoculations (SA)
 - ► Inoculum + complex sow's faeces' inoculations (CA)
- Inoculum: Lactobacillus amylovorus, Clostridium glycolicum, and Parabacteroides spp.
- Faecal microbiota composition increased in diversity in time
- Clustering of CA faeces with sow's faeces
- SA treatments: a lower similarity in microbial composition (diarrhea)


Microbiota from piglets is influenced by the sow's microbiota and by the environment

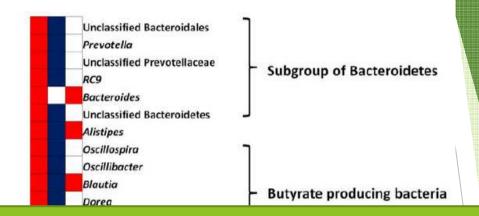
Jansman et al., 2012

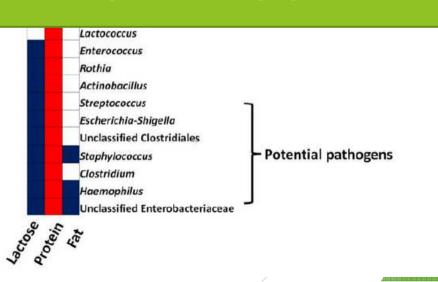


Study on the effect of breed or nursing mother

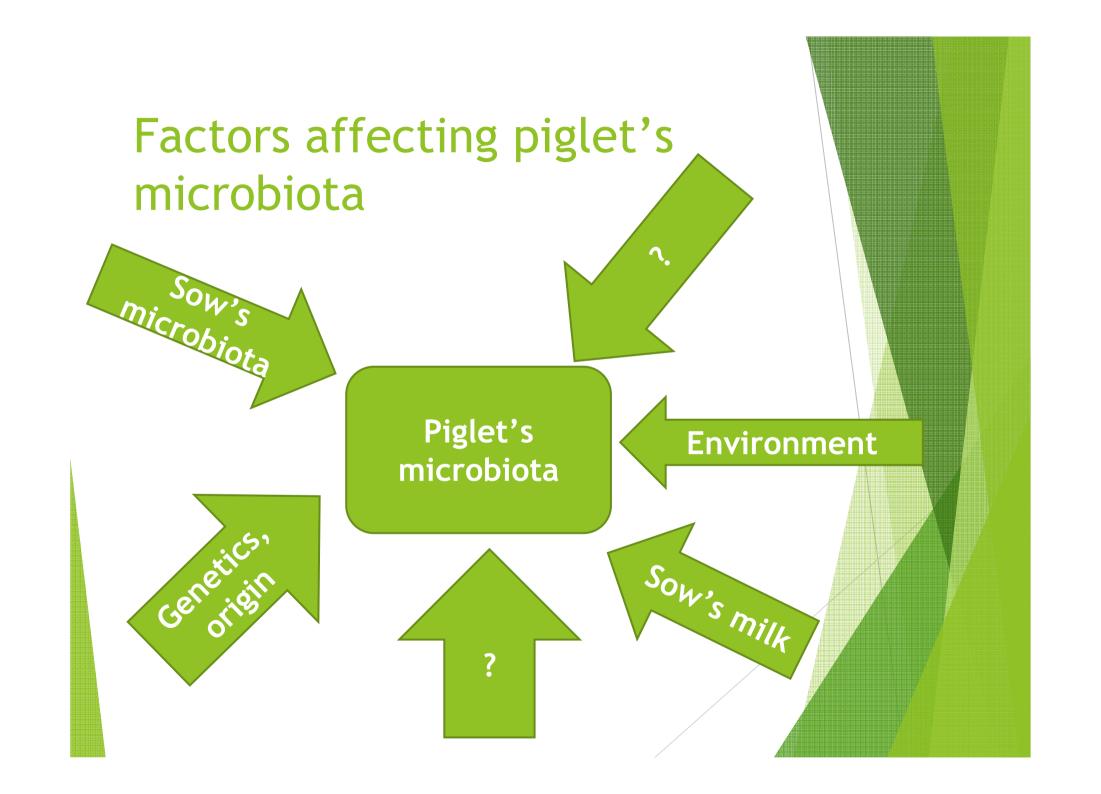


Effects of breed and nursing


mother

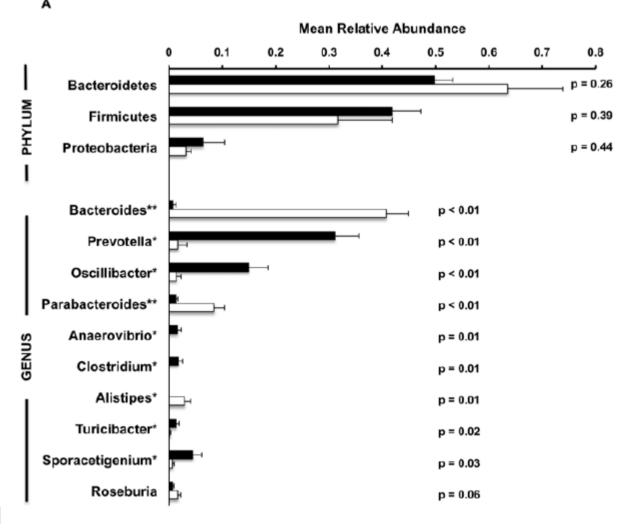

Effect of nursing mother and the breed were evident through the suckling period

Impact of milk composition



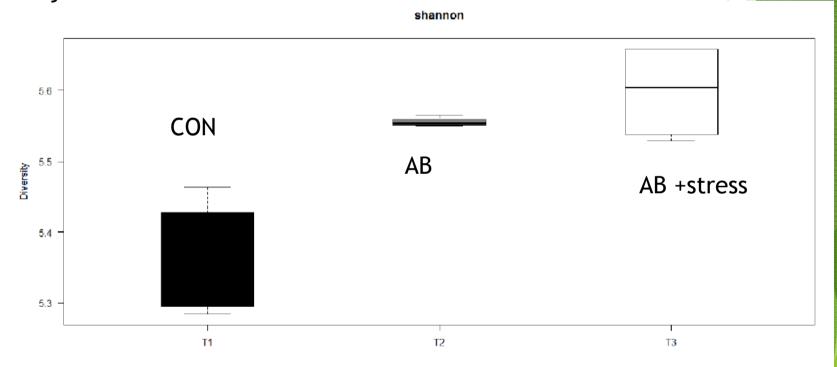
Milk lactose, protein and fat all significantly impacted the bacterial profile of piglets

Red: positive correlation


Blue: negative correlation

Mother-fed vs formula milk

D21 Cecal content


Black: mother fed White: formula fed

Poroyko et al., 2011

Effects of antibiotic or stresstreatment on d4

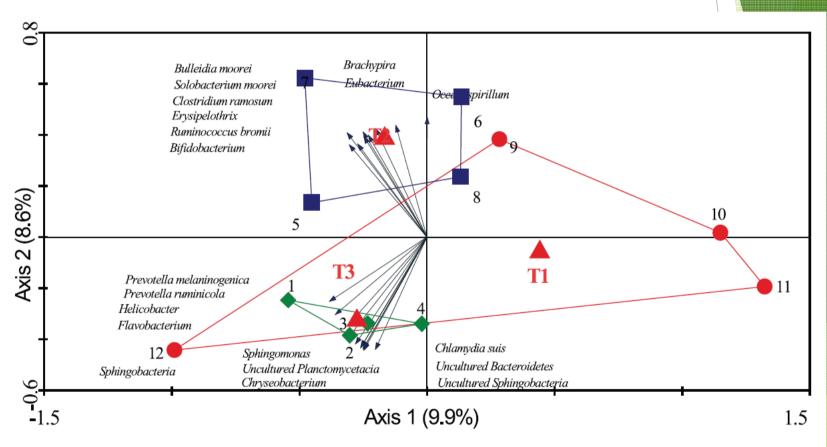

Jejunal content

Figure 2. Diversity in microbiota in the three treatment groups. The Shannon index (y-axis) was calculated for all three treatments (T1, T2, and T3) (x-axis). doi:10.1371/journal.pone.0100040.g002

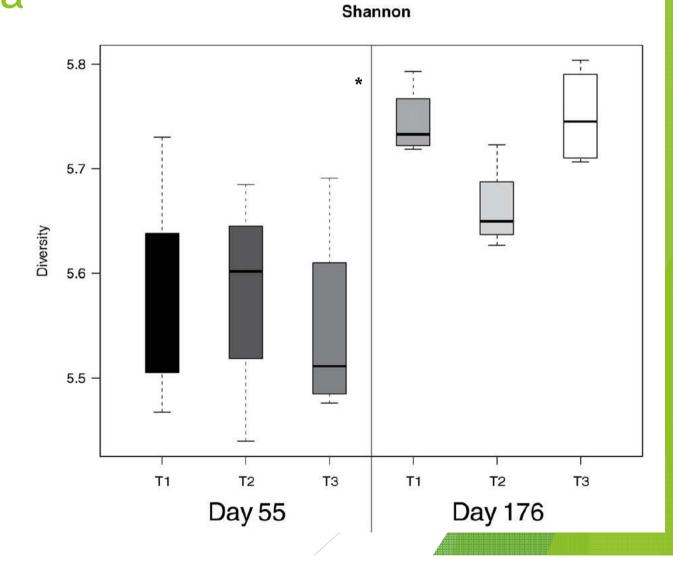
Schokker et al., 2014

Impact on microbiota composition

Figure 1. Triplot for RDA analysis of jejunal microbiota composition. Nominal environmental variables T1, T2 and T3 are represented by red triangles (♠). Samples are grouped by treatment: T1 (red; ○), T2 (blue; □) and T3 (green; ◇), each symbol represents a pool of four pigs, and numbers represent pool identity number. Microbial groups contributing at least 60% to the explanatory axes are represented as vectors. Both axes together explain 18.5% of the total variance in the dataset. doi:10.1371/journal.pone.0100040.g001

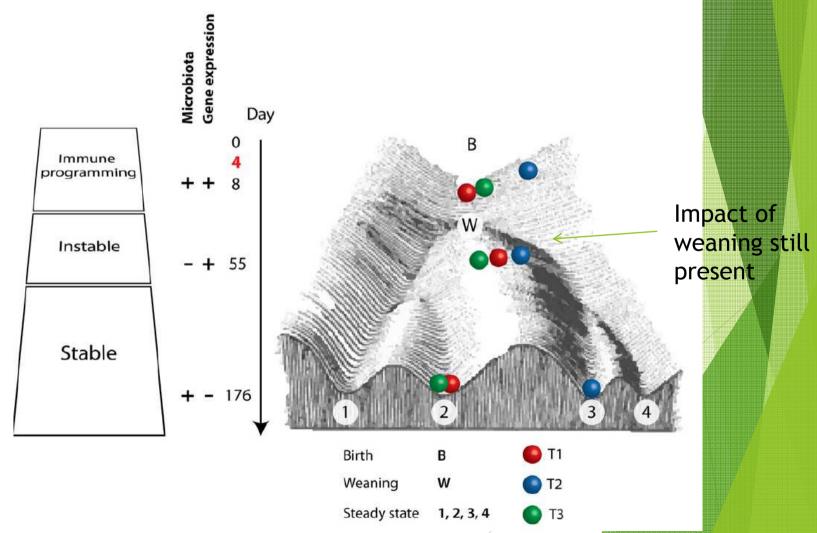
Effects on transcriptome

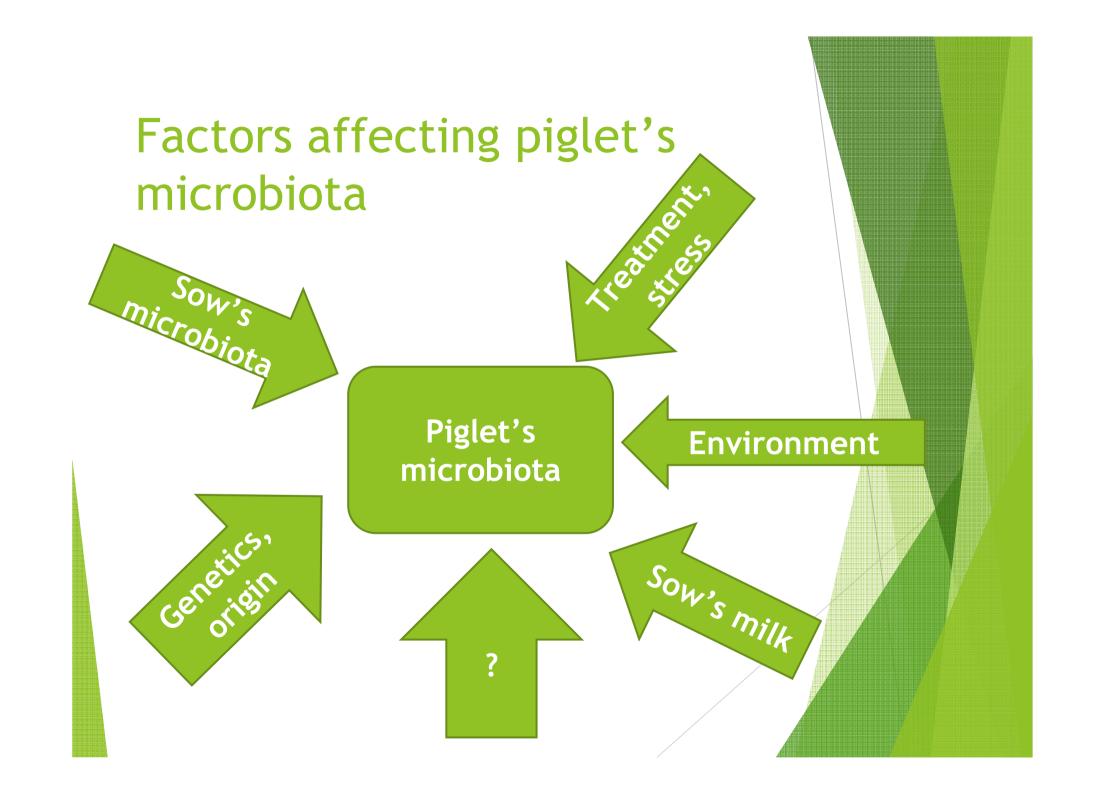
- ▶ Differences in immune programming in early-life
- Antibiotic treatment versus control


Table 2. Functional analysis of genes differentially expressed between treatment 2 versus 1.

	DOWN						
IEJUNUM	#	Name					
	1	chemotaxis					
	2	cytokine activity					
	3	chemokine activity					
	4	regulation of secretion/immune effector process					
	5	cell migration/motion (leukocyte)					
LEUM	#	Name					
	1	cytokine activity					
	2	chemotaxis					
	3	second-messenger-mediated signaling (cAMP)					
	4	chemokine activity					
	5	5 response to bacterium/regulation of systemic process					

doi:10.1371/journal.pone.0100040.t002


Long-lasting effects on microbiota


Jejunal content

Schokker et al., 2015

Towards a differential gut homeostasis

Corn starch vs Raw potato

starch

From d70-d170

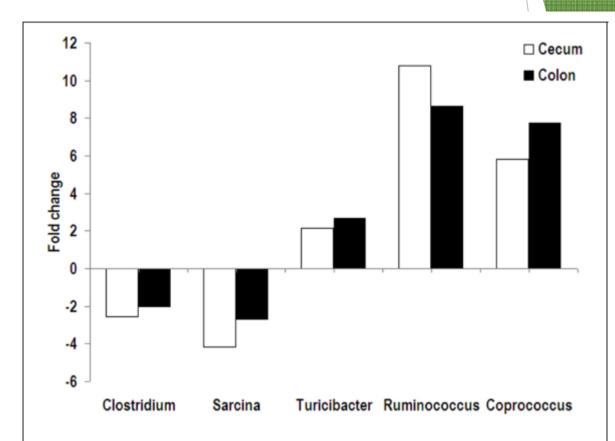


FIGURE 2 | Fold change of relative abundance (RPS vs. CS). Bacterial genera were significantly affected by dietary RPS in the cecum and colon of pigs.

Clustering according to intestinal segment and dietary treatment

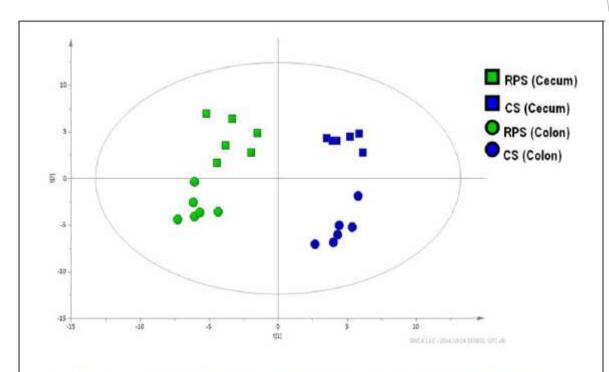
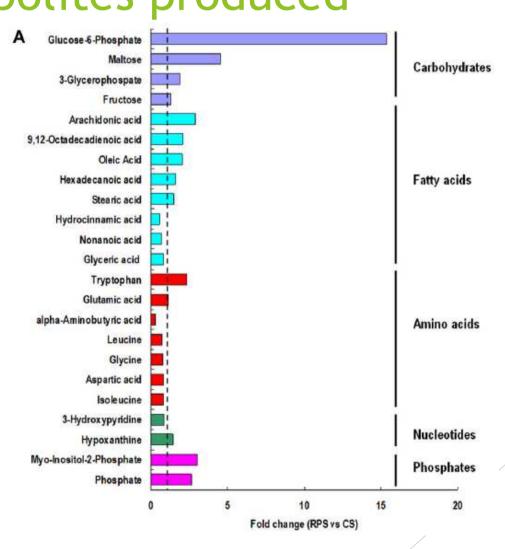
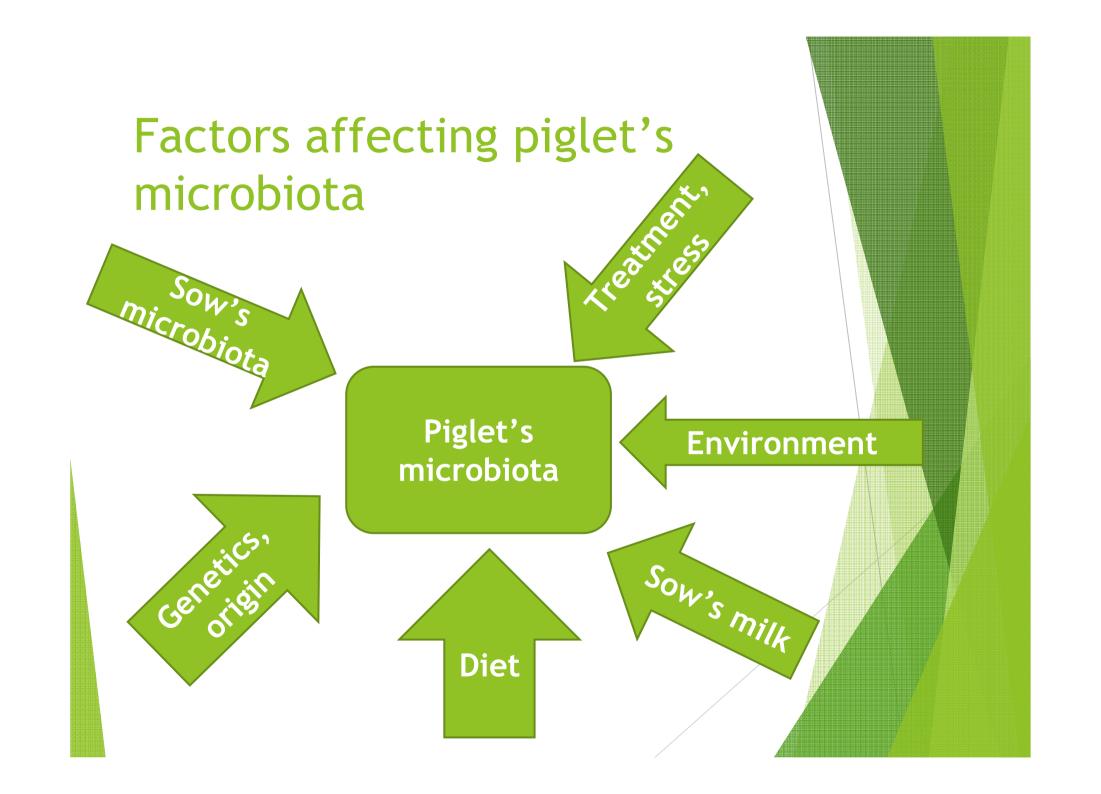
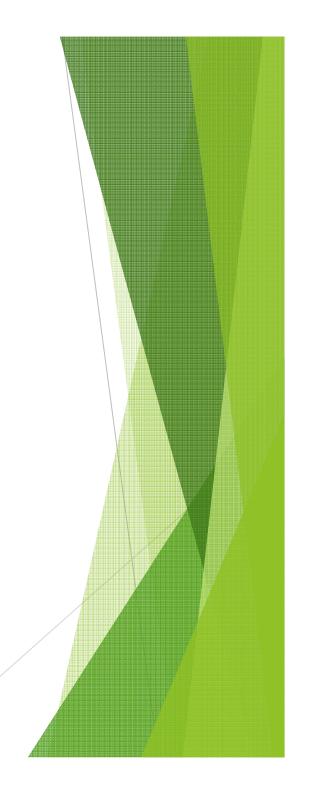




FIGURE 3 | Partial least squares discriminant analysis (PLS-DA).

PLS-DA of microbial metabolites in cecal and colonic contents from pigs fed corn starch (CS) and raw potato starch (RPS).

Resulting in different metabolites produced


Adding fermentable feed ingredients to pigs: changes or stability to the intestinal microbiota

AIM

Reduce the risk of infections at weaning

STRATEGY

- Through action on microbiota
- Indirectly: Via sow
- Directly: Interventions on piglets

Effects by the maternal diet

Inulin
Wheat bran
Resistant starch

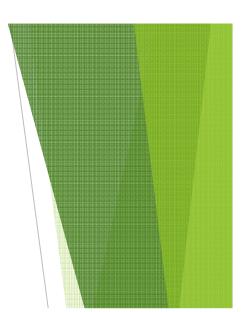
Hypotheses

Inulin in the diet of gestating and lactating sows

- > 3% inulin diet from 14d a.p.;
- change from gestation to lactation diet on 1d p.p.

Table 1 Microbial cell counts (log10/g wet weight) in the faeces of sows fed a diet without (C) or with inulin (I)

	Day 4 a.p.		Day 1 p.p.		Day 5 p.p.		P-value	P-value	
	$C (n^1 = 10)$	I (n = 10)	C (n = 10)	I (n = 9)	C (n = 10)	I (n = 10)	Diet	Time	Diet*time
Eubacteria	10.6 ± 0.51	10.8 ± 0.85	9.86 ± 0.10	9.75 ± 0.21	10.8 ± 0.15	10.8 ± 0.18	0.847	0.005	0.718
Enterobacteria	7.21 ± 1.01	6.66 ± 0.90	7.16 ± 0.98	7.77 ± 0.75	7.42 ± 0.68	7.54 ± 0.99	0.802	0.103	0.017
Enterococci	6.42 ± 0.45	6.83 ± 0.59	5.96 ± 0.31	7.00 ± 0.91	6.62 ± 0.48	6.98 ± 0.61	0.014	0.109	0.028
Bifidobacteria	7.92 ± 1.05	8.10 ± 1.91	7.24 ± 0.51	7.60 ± 1.08	8.05 ± 0.87	7.92 ± 1.51	0.976	0.052	0.357
Lactobacilli	9.39 ± 0.62	9.32 ± 0.77	8.89 ± 0.67	7.73 ± 1.42	8.98 ± 0.57	8.60 ± 0.89	0.109	< 0.001	0.051
L. reuteri	8.37 ± 0.86	8.25 ± 0.64	7.36 ± 1.12	6.83 ± 0.66	7.93 ± 0.73	7.57 ± 0.47	0.305	< 0.001	0.244
L. amylovorus	9.39 ± 0.40	9.32 ± 0.35	8.50 ± 0.96	8.22 ± 0.63	9.12 ± 0.61	9.03 ± 0.32	0.502	< 0.001	0.606
L. johnsonii	6.16 ± 1.10	5.81 ± 0.94	4.97 ± 0.79	5.20 ± 0.52	5.46 ± 0.42	5.25 ± 0.48	0.872	0.002	0.411
L. mucosae	8.22 ± 0.83	7.83 ± 0.41	7.08 ± 0.89	6.72 ± 0.47	7.56 ± 0.61	7.17 ± 0.96	0.088	< 0.001	0.898
C. leptum	10.5 ± 0.24	10.1 ± 0.55	9.50 ± 0.97	9.84 ± 0.62	9.89 ± 0.73	9.91 ± 1.11	0.987	0.010	0.266
C. coccoides	10.7 ± 0.53	10.8 ± 0.24	9.69 ± 1.05	9.79 ± 0.77	10.6 ± 0.41	10.5 ± 0.93	0.891	0.002	0.762
BPP	9.66 ± 0.53	9.69 ± 0.54	9.40 ± 0.25	9.31 ± 0.37	9.83 ± 0.52	9.55 ± 0.28	0.152	0.052	0.557


Effects on the microbial metabolites of sows

Change in microbial metabolites

	Day 4 a.p.		Day 1 p.p.		Day 5 p.p.		P-value			
	C (n = 11)	I (n = 10)	C (n = 11)	I (n = 9)	C (n = 11)	I (n = 10)	Diet	Time	Diet*time	
рН	6.79 ± 0.23	6.63 ± 0.34	6.99 ± 0.34	6.59 ± 0.36	6.68 ± 0.12	6.63 ± 0.23	0.007	0.323	0.167	
L-lactate (mmol/kg)	0.73 ± 0.55	0.70 ± 0.30	0.43 ± 0.28	0.28 ± 0.22	0.35 ± 0.18	0.24 ± 0.19	0.185	0.002	0.909	
D-lactate (mmol/kg)	0.62 ± 0.64	0.54 ± 0.26	0.20 ± 0.20	0.14 ± 0.12	0.16 ± 0.12	0.11 ± 0.11	0.451	0.002	0.947	
Ammonia (mmol/kg)	32.6 ± 19.5	47.0 ± 29.1	13.7 ± 9.64	20.2 ± 10.4	21.7 ± 10.2	273 ± 12.9	0.070	0.001	0.586	
SCFA (mmol/l)	152 ± 44.4	155 ± 30.1	100 ± 31.4	123 ± 31.5	138 ± 38.3	158 ± 17.5	0.164	< 0.001	0.602	
Acetic acid (mol. %)	54.4 ± 3.61	53.7 ± 3.78	60.6 ± 4.11	56.8 ± 4.19	60.9 ± 4.35	59.1 ± 3.16	0.081	< 0.001	0.388	
Propionic acid (mol. %)	23.0 ± 1.08	22.6 ± 1.33	19.3 ± 2.03	20.9 ± 1.11	19.4 ± 1.40	19.9 ± 1.69	0.153	< 0.001	0.053	
i-butyric acid (mol. %)	2.87 ± 0.56	2.79 ± 0.33	2.87 ± 0.40	2.61 ± 0.55	2.52 ± 0.27	2.51 ± 0.32	0.337	0.037	0.641	
n-butyric acid (mol.%)	13.0 ± 2.85	13.9 ± 2.62	10.4 ± 4.24	12.8 ± 3.36	11.1 ± 3.54	12.4 ± 1.71	0.152	0.025	0.711	
i-valeric acid (mol. %)	4.05 ± 0.91	3.92 ± 0.51	4.06 ± 0.62	3.88 ± 0.86	3.62 ± 0.43	3.56 ± 0.53	0.538	0.068	0.950	
n-valeric acid (mol. %)	2.66 ± 0.50	3.09 ± 0.70	2.77 ± 0.51	3.02 ± 0.63	2.45 ± 0.51	2.61 ± 0.45	0.147	0.012	0.467	

Abbreviations: a.p.: ante partum; p.p.: post partum; SCFA short chain fatty acids. Boldface P-values indicate significant effects ($P \le 0.05$).

Altering the microbiota and metabolites of the piglets

Table 3 Microbial cell counts (log₁₀/g wet weight) in the digesta of the stomach and caecum of suckling piglets, where the mother sows received either a diet without (C) or with inulin (I)

95	Stomach	,540	Caecum	
	$C(n^1 = 7)$	I (n = 8)	$C(n^2 = 8)$	I (n = 8)
Eubacteria	10.3 ± 0.26°	11.0 ± 0.25 ^b	11.7 ± 0.37	11.7 ± 0.33
Enterobacteria	4.56 ± 0.87	3.45 ± 0.50^{b}	9.02 ± 0.66	8.58 ± 1.20
Enterococci	7.24 ± 0.45	7.21 ± 0.74	6.76 ± 0.49^a	7.57 ± 0.46^{b}
Bifidobacteria	3.89 ± 0.70	5.04 ± 1.83	5.16 ± 0.91	5.57 ± 1.29
Lactobacilli	9.31 ± 0.88	9.06 ± 0.97	10.0 ± 1.23	9.94 ± 1.49
L. reuteri	8.23 ± 0.63	7.81 ± 0.84	8.40 ± 0.50	8.13 ± 0.62
L. amylovorus	9.28 ± 0.32^{a}	8.17 ± 0.66^{b}	9.26 ± 0.69	9.28 ± 0.79
L. johnsonii	7.05 ± 0.69	6.45 ± 0.93	6.76 ± 0.79	6.22 ± 1.09
L. mucosae	7.61 ± 0.82	6.78 ± 1.42	7.95 ± 0.89	7.97 ± 1.31
C. leptum	6.70 ± 0.31	6.40 ± 0.89	10.0 ± 0.78 ^a	10.8 ± 0.15 ^b
C. coccoides	7.02 ± 0.93	6.66 ± 1.02	10.3 ± 0.78	10.7 ± 0.43
BPP	6.14 ± 1.12	5.43 ± 1.72	9.87 ± 0.74	10.3 ± 0.32

Altering the microbiota and metabolites of the piglets

Table 4 Microbial metabolites and pH in the digesta of suckling piglets, where the mother sows received a diet without (C) or with inulin (I)

Stomach		Small intest	tine	Caecum		Rectum	
$C(n^1 = 8)$	I (n = 8)	$C (n^2 = 8)$	I (n = 8)	$C(n^3 = 8)$	I (n = 8)	$C(n^4 = 8)$	I (n = 8)
readern contin	WERK HAVE BE	Partie of States	= 15 to 15 t		estable in the arm	CHIEF CONTRACTOR	

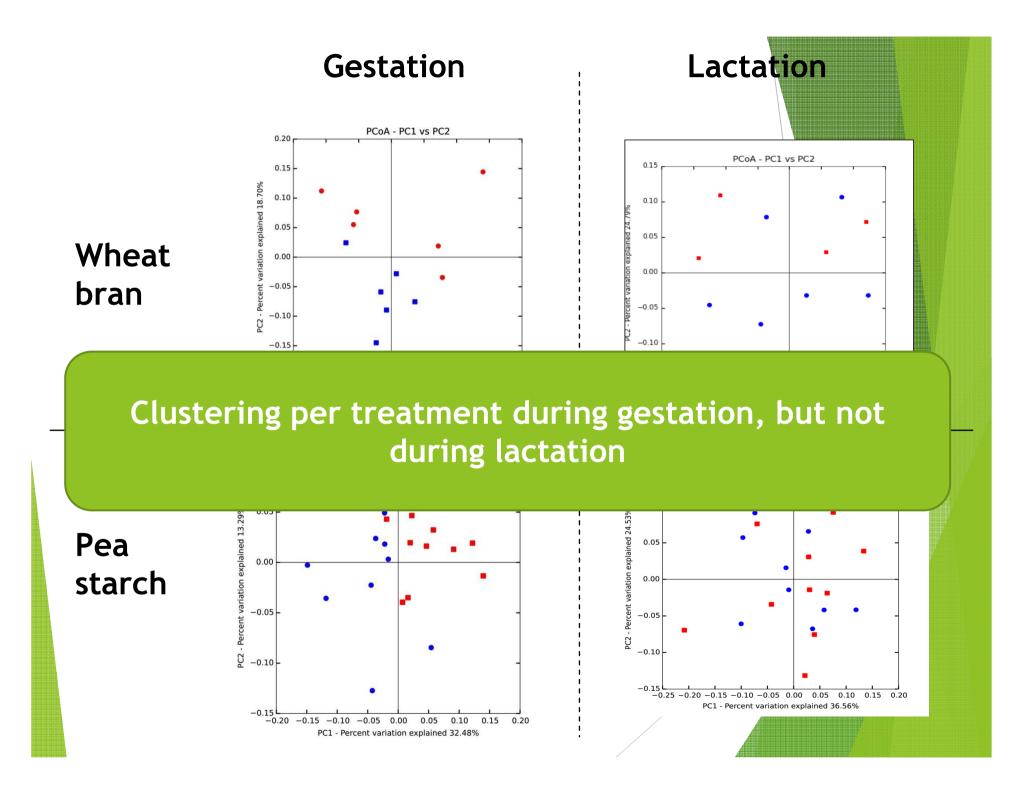
Inulin seems to have the potential to influence the gastrointestinal microbiota of suckling piglets through the diet of their mother

Acetic acid (mol.%)	3.33 ± 1.75	3.52 ± 1.93	4.40 ± 2.08	3.28 ± 3.41	36.5 ± 9.78	33.9 ± 11.4	13.9 ± 6.75	9.68 ± 4.01
Propionic acid (mol %)	0.12 ± 0.10	0.12 ± 0.20	0.31 ± 0.35	0.19 ± 0.30	10.8 ± 2.59	8.93 ± 3.26	3.83 ± 2.33	2.80 ± 2.36
i-butyric acid (mol.%)	0.01 ± 0.00^{a}	0.01 ± 0.02^{b}	0.02 ± 0.02	*	1.24 ± 0.49	0.90 ± 0.40	0.69 ± 0.48	0.47 ± 0.36
n-butyric acid (mol.%	0.18 ± 0.04^{a}	0.06 ± 0.07^{b}	0.12 ± 0.11	0.11 ± 0.11	3.74 ± 1.68	3.10 ± 1.50	2.07 ± 1.61	1.21 ± 1.12
i-valeric acid (mol.%)	0.27 ± 0.52^{a}	10.03 ± 0.03^{b}	0.04 ± 0.03	0.03 ± 0.03	1.62 ± 0.56	1.13 ± 0.41	1.37 ± 0.87	0.86 ± 0.67
n-valeric acid (mol.%)	0.02 ± 0.01	0.00 ± 0.00	0.01 ± 0.01	0.01 ± 0.00	1.70 ± 0.72	1.16 ± 0.50	0.91 ± 0.57	0.47 ± 0.24

Two animal experiments

Wheat bran (insoluble fibers)

Vs. control



Pea starch (resistant starch)
Vs control

Gestation Lactation

Gestation Wheat bran								
Genus	CON	WB	P-values	FDR				
Bacteroidetes								
Parabacteroides	0.36	0.14	<0.001	0.02				
Unclassified_Bacteroidales	6.13	2.25	<0.001	0.02				
Bacteroides	0.22	0.04	<0.005	NS				
CF231	1.22	0.57	0.01	NS				
Unclassified_RF16	2.38	0.79	0.03	\ NS				
Prevotella	15.5	19.0	NS \	NS				

13 genera differed in relative abundance between the CON and WB groups

Unclassified_ Erysipelotrichaceae OTU1	0.02	0.06	0.01	NS	
Anaerovibrio	0.20	0.53	0.03	NS	
Turicibacter	0.13	0.07	0.03	NS V	
Oscillospira	2.69	1.76	0.03	/ NS	
Unclassified_Erysipelotrichaceae OTU2	0.08	0.03	0.06	NS	
Unclassified_Mogibacteriaceae	0.75	0.44	0.07	NS	
Proteobacteria					
Unclassified_Enterobacteriaceae	0.04	0.01	0.01	NS	
Ruminohacter	n n2/	በ በ3	NS	NS	

Genus	Ge	Gestation Pea star				
Genus	DS	RS	Р	FDR		
Actinobacteria						
Bifidobacterium	0.92	1.36	0.02	NS		
Bacteroidetes						
Unclassified_RF16	1.53	0.80	0.01	NS		
Firmicutes /						
Unclassified_Ruminococcaceae	17.75	20.68	0.02	NS		

Differences at the phylum level and the genus level during gestation

	I di leibactei	0.55	1	-0,000	
- 1					
- 1		0 04	0.70	0.00	N.C.
- 1	Sharnoa	() /1	() /9	0.03	
- 1	ששט של	0.21	0.77	0.03	119

Dietary interventions on sows affect their fecal microbiota

ae	0.12	0.20	0.02	NS
Spirochaetes				
Treponema	4.20	3.10	0.01	NS
Sphaerochaeta	1.05	0.50	<0.005	NS

WB exp, milk composition

Period	Treatment	Protein (%)	Fat (%)	Lactose (%)	lgA (mg/ml)	lgG (mg/ml)	lgM (mg/ml)
	CON	19.1	6.33	2.60	13.9	63.5	4.84
Colostrum	WB	19.0	6.45	2.62	13.4	68.5	4.22
	SEM	0.30	0.14	0.03	0.81	3.46	\0.32
	CON	6.17	9.70	4.66	2.10	0.40	1.08
Milk W1 ¹	WB	5.96	9.48	4.74	2.53	0.41	1 .15
	SEM	0.09	0.51	0.05	0.16	0.05	0.11
	CON	6.03	9.84	4.81	2.43	0.30	1.10
Milk W2	WB	5.62	9.62	4.89	2.66	0.25	1.08
	SEM	0.10	0.28	0.02	0.17	0.02	0.07
	CON	6.22	9.72	4.82	3.41	0.20	0.97
Milk W3	WB	5.86	8.85	4.93 🖊	3.57	0.16	1.01
	SEM	0.08	0.38	0.03	0.23	0.02	0.08
	treatment	0.14	0.46	0.03	0.88	0.47	0.58
P-values	time	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001
	treatment*time	0.75	0.62	0.88	0.81	0.78	0.35

¹W1= first week after farrowing, W2= second week, W3= third week

RS exp, milk composition

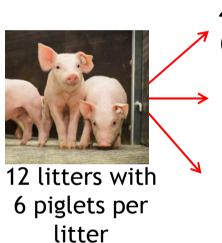
- Resistant starch:
 - Decreased protein concentration (all time points)
 - Increased lactose concentration in colostrum
 - Decreased lactose concentration on W3

Dietary interventions on sows affect milk macronutrient composition

WB exp, microbiota of piglets

	CON (N=7)	WB (N=7)	P-value	FDR
Actinobacteria	0.71	0.57	NS	NS
Collinsella	0.29	0.08	0.04 NS	NS NS
Bacteroidetes	32.3	28.4		
Butyricimonas	0.15	0.02	0.07	
Odoribacter	0.25	0.02	0.07	
Bacteroides	6.72	2.21	NS NS NS	NS
Unclassified_Bacteroidales	3.27	5.61		NS
Prevotella	12.3	11.8		NS
Euryarchaeota	0.01	0.02	0.05	NS
Methanobrevibacter	0.01	0.02	0.05	NS
Firmicutes	56.0	63.2	NS	NS
Unclassified_Clostridiaceae	1.57	2.82	< 0.001	0.04
Unclassified_Lachnospiraceae OTU2	1.91	4.14	0.04	NS
Ruminococcus	1.74	0.85	0.07	NS
Phascolarctobacterium	2.35	3.68	0.07	NS
Roseburia	0.11	0.57	0.09	NS
Lactobacillus	14.8	13.1	NS	NS
Unclassified_Clostridiales	6.57	6.97	NS	NS
Unclassified_Ruminococcaceae	11.7	14.3	NS	NS

RS exp, microbiota of piglets


The maternal diet did not affect colonic microbiota composition at weaning

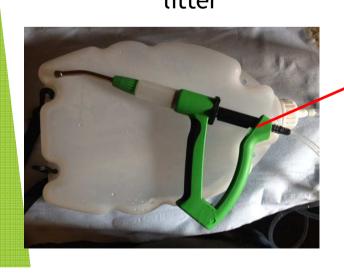
Dietary interventions on sows has rather limited effects on piglet's microbiota

Treatment during the lactation period

Inulin

Inulin supplementation during the lactation period

4 litters-Control (water)


4 litters-20% inulin solution

4 litters-30% inulin solution

After weaning

d-28

Same diet (no inulin) for another 3 weeks

* Inulin was obtained by oral ingestion :

1st week: 2.5ml per day 2nd week: 5ml per day 3rd week: 7.5ml per day 4th week: 10ml per day


Temporary effects on microbiota

Effects on microbiota did not remain in the early post-weaning period

I								0.540
Laciooneiiii spp.	0.05	0.55	0.10	0.007	1.05	J.TJ	7.70	0.040
Clostridium spp.	0.73 0.53	1.20	0.13	0.088	0.19	0.15	0.13	0.04 0.883
Escherichia spp.	1.22^{b} 0.40^{a}	1.24 ^b	0.17	0.047	0.01	0.02	0.02	0.00 0.883
Enterobacteria spp.	1.25^{ab} 0.40^{a}	1.48^{b}	0.17	0.014	0.04	0.05	0.02	0.02 0.730

Take home message

- Piglet's microbiota is affected by:
 - ► Breed, origin
 - Environment
 - Sow's microbiota
 - Sow's milk composition
 - (Medical) treatments and stress
 - Diet
- Effects on gut homeostasis are observed
- ▶ Dietary interventions with fermentable feed ingredients affect microbiota, but sometimes to a limited extend

